A Learning Theory for Reward-Modulated Spike-Timing-Dependent Plasticity with Application to Biofeedback

نویسندگان

  • Robert A. Legenstein
  • Dejan Pecevski
  • Wolfgang Maass
چکیده

Reward-modulated spike-timing-dependent plasticity (STDP) has recently emerged as a candidate for a learning rule that could explain how behaviorally relevant adaptive changes in complex networks of spiking neurons could be achieved in a self-organizing manner through local synaptic plasticity. However, the capabilities and limitations of this learning rule could so far only be tested through computer simulations. This article provides tools for an analytic treatment of reward-modulated STDP, which allows us to predict under which conditions reward-modulated STDP will achieve a desired learning effect. These analytical results imply that neurons can learn through reward-modulated STDP to classify not only spatial but also temporal firing patterns of presynaptic neurons. They also can learn to respond to specific presynaptic firing patterns with particular spike patterns. Finally, the resulting learning theory predicts that even difficult credit-assignment problems, where it is very hard to tell which synaptic weights should be modified in order to increase the global reward for the system, can be solved in a self-organizing manner through reward-modulated STDP. This yields an explanation for a fundamental experimental result on biofeedback in monkeys by Fetz and Baker. In this experiment monkeys were rewarded for increasing the firing rate of a particular neuron in the cortex and were able to solve this extremely difficult credit assignment problem. Our model for this experiment relies on a combination of reward-modulated STDP with variable spontaneous firing activity. Hence it also provides a possible functional explanation for trial-to-trial variability, which is characteristic for cortical networks of neurons but has no analogue in currently existing artificial computing systems. In addition our model demonstrates that reward-modulated STDP can be applied to all synapses in a large recurrent neural network without endangering the stability of the network dynamics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical Analysis of Learning with Reward-Modulated Spike-Timing-Dependent Plasticity

Reward-modulated spike-timing-dependent plasticity (STDP) has recently emerged as a candidate for a learning rule that could explain how local learning rules at single synapses support behaviorally relevant adaptive changes in complex networks of spiking neurons. However the potential and limitations of this learning rule could so far only be tested through computer simulations. This article pr...

متن کامل

Reinforcement Learning Through Modulation of Spike-Timing-Dependent Synaptic Plasticity

The persistent modification of synaptic efficacy as a function of the relative timing of pre- and postsynaptic spikes is a phenomenon known as spike-timing-dependent plasticity (STDP). Here we show that the modulation of STDP by a global reward signal leads to reinforcement learning. We first derive analytically learning rules involving reward-modulated spike-timing-dependent synaptic and intri...

متن کامل

Reward-modulated spike-timing-dependent plasticity with a dynamic spike timing rule and inhibitory plasticity

The viability of spike-timing-dependent plasticity (STDP) to explain learning processes is controversial, although recent developments of reward-modulated STDP (RM-STDP) models provide a plausible substrate. However, evidence has also emerged to show that rewards themselves can modify the STDP rule. In this modeling study, we use a dynamic STDP rule to show that such modification can lead to ne...

متن کامل

Functional requirements for reward-modulated spike-timing-dependent plasticity.

Recent experiments have shown that spike-timing-dependent plasticity is influenced by neuromodulation. We derive theoretical conditions for successful learning of reward-related behavior for a large class of learning rules where Hebbian synaptic plasticity is conditioned on a global modulatory factor signaling reward. We show that all learning rules in this class can be separated into a term th...

متن کامل

Reinforcement Learning Using a Continuous Time Actor-Critic Framework with Spiking Neurons

Animals repeat rewarded behaviors, but the physiological basis of reward-based learning has only been partially elucidated. On one hand, experimental evidence shows that the neuromodulator dopamine carries information about rewards and affects synaptic plasticity. On the other hand, the theory of reinforcement learning provides a framework for reward-based learning. Recent models of reward-modu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS Computational Biology

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2008